

CHARACTERIZATION OF A BIOLOGICAL SYSTEM AS RADIATION BIOSENSOR

- Space dosimetry
- Radiation biosensor
- Photosynthesis
- **Radiation Target Theory**
- **>** Test and calibrations
- Experimental set-up
- Measurements
- Future developments
- Application fields

SPACE DOSIMETRY

Long periods of permanence in space and hence exposure to cosmic radiation are foreseen for the next space missions

- > INTERNATIONAL SPACE STATION (ISS)
- > HUMAN MISSIONS TO MARS

One of the most important hazard for the crews in long term space mission is:

RADIATION EXPOSURE

SPACE DOSIMETRY

Primary cosmic radiation: 95% protons, 3,5% α particles, HZE (High Z Elements)

- GCR (Galactic Cosmic Rays): galactic origin, generated outside of the solar system

SCR (Solar Cosmic Rays): are in general large clouds of charged particles (mainly protons and helium nuclei in a wide range of energy) released from the sun by gigantic eruptions during solar storms.

In the spacecraft habitat a secondary radiation is produced by the interaction of primary cosmic rays with the spacecraft shielding

Secondary particles: neutrons, protons, electrons, photons, muons, pions, nuclear fragments

Aircrew are exposed to

MIXED RADIATION FIELDS
 WIDE ENERGY SPECTRA

SPACE DOSIMETRY

BIOLOGICAL EFFECTS OF RADIATION DURING SPACE MISSIONS

Few literature data are available; however, there might be a synergistic effect between:

> different types of radiations;

> radiation and environmental factors such as microgravity

Evaluation of the absorbed dose through A DIRECT ASSESSMENT OF DAMAGES at biochemical level on biological elements

Final goal:

SPACE DOSIMETRY

 To develop a device which is sensitive to EVERY KIND OF RADIATION, as long as it is harmful at biological level.

 To answer questions concerning the possible synergy between radiation and other factors that characterize the space environment.

BIOSENSORS

"Detector molecule" (BIOMEDIATORS) are fixed on a surface.

The information is obtained when they react selectively with the biological molecules that must be monitored in each sample.

INHIBITION BIOSENSORS

Information is given by the measurement of the TOXIC EFFECT of the substance to be detected, on the BIOCHEMICAL ACTIVITY of enzymes or enzymatic complexes, which are used as biomediators.

RADIATION BIOSENSOR

It is a **INHIBITION BIOSENSOR: the incident radiation has a** HARMFUL EFFECT

and causes a variation of the biological activity of the biomediator.

The chosen biomediator, for its natural biochemical activity, if stimulated with visible light, emits fluorescence.

If the sample is exposed to radiation, then the fluorescence intensity depends on the absorbed dose.

The biomediator is:

PHOTOSYSTEM II

enzymatic complex that is included in photosynthetic organisms

Photosynthetic organisms

- Photosynthesis : transformation of light energy in chemical energy
- Photosystem II: multi enzymatic complex in plants and microorganisms (algae, cyanobacteria) able to catalyze the light to produce redox chain with electron transport and separation of water in molecular oxigen
- On the basis of the life

PHOTOSYNTHESIS and PS II

LIGHT ENERGY \longrightarrow CHEMICAL ENERGY 6CO₂+6H₂O+**nhv** \longrightarrow 6O₂ + C₆H₁₂O₆

Where: in thylacoids, within chloroplasts

2 phases: DARK reactions

LIGHT REACTIONS

Absorption of photons in the range of visible light

ATP and NADPH synthesis

CHAIN of REDOX REACTIONS

FLUORESCENCE AND PHOTOSYNTHESIS

Processes that are competitive to photosynthesis:

- Radiative decay (FLUORESCENCE)
- > Non-radiative decay (heat).

PHOTOSYNTHESIS AND STRESS

Various factors may affect the complex chain of photosynthetic reactions:

🗸 Weedkiller

INFN

- ✓ Thermic Stress
- ✓ Toxic substances

Radiation

time (µs)

ENZYME RADIOINDUCED INACTIVATION

Radiation-enzyme interaction:

Indirect effect: due to free radical generated from water radiolysis

ionization \implies biochemical damage

- Fragmentation of polypeptide chains
- ➢ solubility variation
- break of enzyme structures

It allows to predict an exponential decrease of biochemical activity (K) of an enzymatic complex with the absorbed dose (D)

Assumptions:

- **1.** Existence of functional, molecular units (TARGET)
- 2. Only primary random ionizations can occur
- **3.** ∀ primary ionization leads to a loss of functionality

$\mathbf{K} = \mathbf{K}_0 \mathbf{e}^{\mathbf{D}_0}$

K= biochemical activity (e.g.photosynthetic efficiency) K_0 = initial biochemical activity D = dose D_0 = dose to reduce activity to 37%

Simple relationship dose – effects why?

- ✓ No repair mechanisms
- Only direct effects

The trend in the exponential loss of biological activity depends on the **FUNCTIONAL MASS OF ESSENTIAL ENZYMES Mr**,

(mass of sensitive target)

$$\mathbf{n} = \frac{\mathbf{D}}{\mathbf{D}_0} = \mathbf{q} \mathbf{M}_r \mathbf{D} \qquad \longrightarrow \qquad \frac{1}{\mathbf{D}_0} \propto \mathbf{M}_r$$
For γ e⁻: $\mathbf{M}_r = 6.4 * 10^5 \left(\frac{1}{D_0}\right)$ (Kempner G.R. Macey R.I. (1968) Biochim.biophys.Acta

163)

$$\ln \varepsilon = \ln \varepsilon_0 - \frac{1}{D_0} D \qquad \log \varepsilon = 0,43 \log \varepsilon_0 - \frac{0,43}{D_0} D$$

Considering the typical literature value of M_r ($M_r = 334$ kDa)

$$\frac{1}{D_0} \sim 10^{-8} \text{ mGy}^{-1}$$

To see biological effects due to radiation absorption, especially at LOW doses, we need a much more sensitive parameter to radiation, different from photosynthetic efficiency

CHOICE OF THE PARAMETER

Light on

ESTIMATED PARAMETER

PREPARATION PROCEDURE

To extract tylakoids from spinach leaves, a defined preparation protocol is accurately followed.

(Berthold D.A, et al., 1981)

To guarantee Radiation Target Theory hypothesis during radiation exposure

NO FREE RADICAL must determine biological damages

so the sample can be irradiated:

Free radical can't spread to react with functional molecules

FROZEN

The measure can be automated, at different time during the exposure time

Free radical are not generated because no water molecules are present during the exposure.

FREEZED-DRIED

The measure can't be automated because the sample must be hydrated before measure

MEASUREMENT PROCEDURE

The frozen sample is placed in the measurement seat where it is maintained at T= -13°C

Sample Volume: 150 µl

MEASUREMENT PROCEDURE

6 light emitting diodes (LEDs)

Are focused on the sample surface and they provide the light flash (5s) necessary to stimulate fluorescence

$$\lambda_{\text{recieved}} = 650 \text{ nm}$$

MEASUREMENT APPARATUS

IN DIFFERENT RADIATION FIELDS

CALIBRATION

To characterize biosensor behaviour, different exposures have to be performed:

- ✓ To different radiation fields
- ✓ To different energy beams
- ✓ To different dose and dose rate

		Am-Be	0,1-11 MeV	JRC (I)	\bigcirc
	neutrons	Am-Be	0,1-11 MeV	CRE Casaccia(I)	
		CERF	2E-8 - 800 MeV	CERN(CH)	\bigcirc
		Accelerator	40 -180 MeV	TSL Uppsala(SW)	
	protons	Accelerator	180 MeV	TSL Uppsala(SW)	
	gamma	Accelerator	250MeV	MAX L (SW)	
		¹³⁷ Cs	660 keV	CRE Casaccia(I)	
		⁶⁰ Co	1,17 - 1,33 MeV	Torino (I)	
	HZE	C12	500 MeV/n	GSI (D)	
		F56			

EXPOSURE TO NEUTRONS: CERF

CERN Geneve Exposure to neutrons: (2E-8 - 800MeV)

CERF (Cern Eu Reference Field), Line H6 (SPS beam)

It provides particle composition and spectral fluences similar to those in the cosmic radiation field,

a reference base for testing, intercomparing and calibrating passive and active instruments before their use on-board aircraft.

EXPOSURE TO NEUTRONS: Am-Be

JOINT RESEARCH CENTRE, Ispra

Exposure to neutrons: (0,1-11MeV)

Source: Am-Be

characteristic	description	
material	$^{241}_{95}$ Am $^{9}_{4}$ Be	
Am activity	15,5 Ci	
neutron emission rate	$2,2\ 10^6 \text{ per Ci} = 3,4\ 10^7 \text{ n/s}$	

EXPOSURE TO NEUTRONS: Am-Be

CONCLUSIONS ABOUT NEUTRON EXPOSURES

Conclusions about CERN e JRC measurements:

GOOD LINEAR RELATIONSHIP log Ai vs D

Main goal:

REPRODUCIBILITY IN THE RELATIONSHIP

log Ai vs D

Open questions: \triangleright Possible dependence on the time break Δt between measurements

Possible dependence on the "age" of the samples

Possible differences between samples extract from different stock

EXPOSURE TO γ: San Giovanni Hospital

Exposure to γ

⁶⁰Co: $E_{\gamma 1} = 1173.2 \text{ keV}$ $E_{\gamma 2} = 1332.5 \text{ keV}$

Irradiation tests :

> with different Δt ;

> on sample with different "age".

To guarantee that the slope depends only on the absorbed Dose and not on other factor (e.g. health status of leaves used for the thylacoid extraction)

same measurements were performed on controll-samples not irradiated

EXPOSURE TO)

Since values Ai are normalized to Ac, the new parameter

Ai

is independent of peculiar characteristics of the leaves and its decrement depends only on radiation induced damages.

EXPOSURE TO γ

OK!

 $b_2 = 0,43/D_0 = (2,1 \cdot 10^{-4} \pm 4 \cdot 10^{-5}) \text{ mGy}^{-1}$ $b_{13} = 0,43/D_0 = (2,3 \cdot 10^{-4} \pm 4 \cdot 10^{-5}) \text{ mGy}^{-1}$

Resolved problems:

- **>** Dependence on the time break Δt between measurements \checkmark **OK!**
- Dependence on the "age" of the samples

Actual final goal: CALIBRATION

in different radiation fields, with different energy beams, with different dose and dose rate

 $\frac{1}{D_0}$ is linked to biosensor sensitivity to radiation (sensitive molecular target)

Mutants: organisms in which at least one nucleotide is replaced

If mutants organisms have a different functional enzymatic organization

DIFFERENT MOLECULAR TARGET UNITS

ESA FLIGHT

Scientific & technological meeting Trieste, 28-29 Aprile 2004

BIOSENSOR in **BIOPAN**

Foton-M2

Reflight: Spring 2005

Biopan:

Facility installed on the external surface in Foton, designed for exposure experiments in space biology and dosimetry

APPLICATION FIELDS:

RADIOBIOLOGY:

- Improvement in knowledge about radiation interaction mechanisms at biomolecolar level.
- Improvement in knowledge about space environment effects on photosynthetic organisms

ANTI-TERRORISM

Detection of "dirty bombs": devices that combine traditional explosive material (dinamite, nitroglicerina...) with radioactive material (Caesium, Cobalt, Plutonium) in form of dust or thin layers.

Photosystem II is sensitive both to some chemical components in traditional explosive material and and emitted radiation.

A LUTAZIONE DELLA DOSE ASSORBITA PRESSO LA SORGENTE DI Am-Be

Rate di emissione n su 4π : $3,4 \cdot 10^7 \text{ s}^{-1}$ Rate di neutroni sul campione: $4,2 \cdot 10^2 \text{ s}^{-1}$

Fattori di kerma utilizzati per la conversione flusso-dose, da ICRU, Report 44 espressi in Gy m²

Dose rate totale:

 $\mathbf{D}_{rate} = \mathbf{0,16} \text{ mGy/h}$

