AND THEIR RELATION O TERRESTRIAL PROCESSES

TANDSYSTEM UNIT

Alekovo ezero

Émil Gachev

Institute of Geography Bulgarian Academy of Sciences

Bezimenna

About the present study

 This study presents results obtained under the project "Models of contemporary Periglacial Morphogenesis" – a first stage of Bulgarian Periglacial Programme –

a programme for observation and research of terrestrial processes in Bulgarian highest mountains

Bulgarian cold environments

 Cold environments – areas where natural processes are strongly influenced by frost and frost action

• In Bulgaria – the areas above 1850 – 1900 m a. s. l.

Most typical – highest parts of Rila and Pirin mountains above the timberline (2100 m a. s. l. to 2900 m a. s. l.)

Factors for cold environment formation and diversity

Geology and tectonics

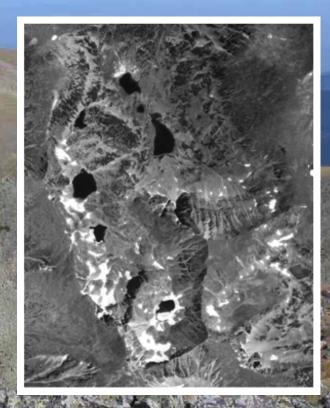
• Climate

Paleogeography (history of environment)

Research site

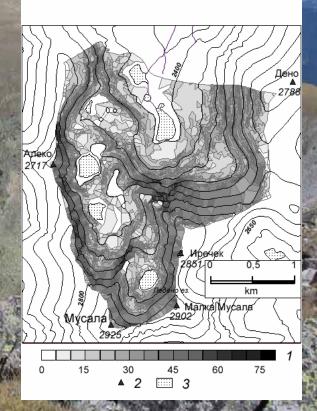
- Musala cirque a terraced relict cirque from Pleistocene glaciation in Rila mountain
 - area 2,451 km²
 altitude 2386 to 2925 m a. s. l.
 defined on catchment basis

Landsystem units

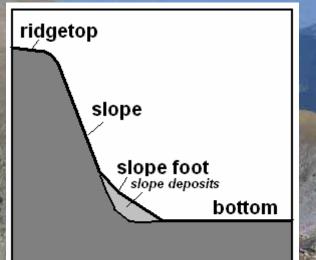

- These are large-scale "bricks" of environment territories that are characterised by internal uniformity in bedrock, topography, soil and vegetation
 - These are parts of land systems (or geosystems) larger landscape features that have specific combination of the main natural components (relief, climate, vegetation, waters, soils) and usually include whole catchments

Methods for landsystem mapping

 Main method — interpretation of aerial photographs at work scale 1: 2 500

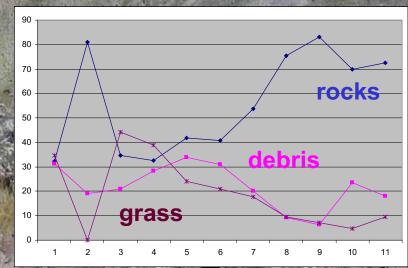

Support methods:

analysis of terrestrial
 digital photographs
 control at 2 field visits
 during 2006 terrain season


Mapping techniques

- GIS mapping on a digital terrain model
 - hypsometry
 - slope tilts
 - New map layers
 - elements of relief
 type of land cover
 landsystem units
- (overlay of the first two layers)

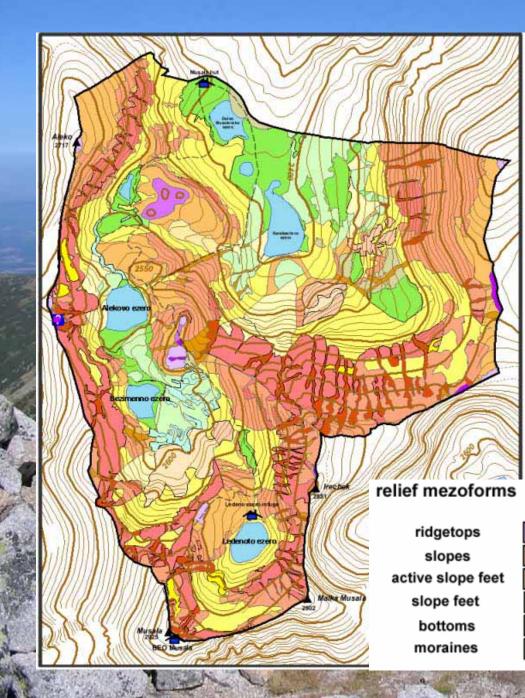
Elements of Relief


Elements of Relief

- Gullies

- steady gullies (5° to 30°)
- steep gullies (steeper than 30°)

Percentage of basic land cover types - gullies



Categories according to land cover specifics lope 616 Subalpine slopes (2386 to Alpine slopes (2575 to 2575 m a. s. l.) 2925 m a. s. l.) Exercit A $5 - 23^{\circ}$ Grass-debris and rock-Grass-debris and debris debris $23 - 40^{\circ}$ 2 Grass-debris, debris and Grass-debris, debris, rock-debris rock-debris and rocky 3 $40 - 70^{\circ}$ **Rock-debris-grassy Rocky with debris and** grasses $70 - 90^{\circ}$ **Rockwalls Rockwalls** Δ a sa an

Elements of Relief

Elements at microscale

 Bulged
 Straight (plain)
 Hollowed

Map of relief elements

relief microforms	5
-------------------	---

bulg	ed	plain	hollowed		
summit		ridgetop plain	col		
slope ridges		slope surfaces 5-25 25-40 40-90	gully 5-30	slopes 30-80	
rock glacier		active talus			
talus cone		talus coverage			
rigel	rigel col	bottom (terrace)	gully	lake	
moraine	moraine col				

Land cover types

homogeneous

Rocks

Debris

Grass

Barren ground

Water

heterogeneous

Debris and grass

Rocks, debris & grass

Land cover types

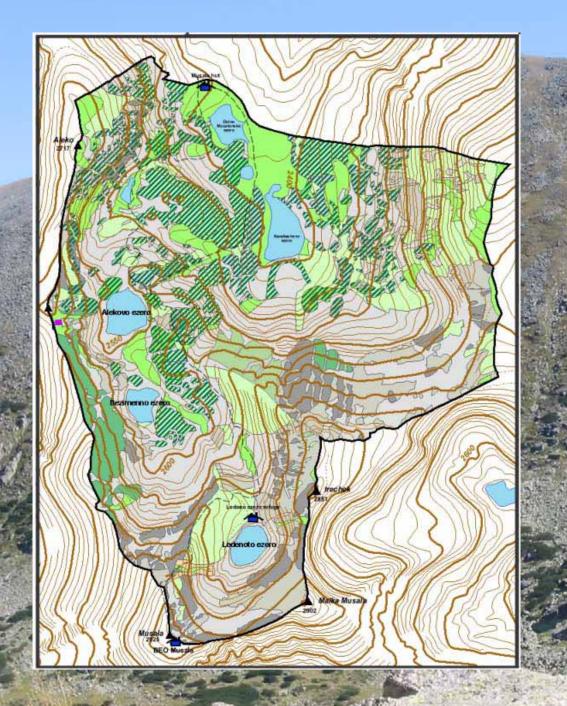
Heterogeneous with mugo pine

Rocks & Pinus mugo

Debris & Pinus mugo

Grass & Pinus mugo

Rocks, debris & Pinus mugo


Debris, grass & Pinus mugo

Rocks, grass & Pinus mugo

Rocks, debris, grass & Pinus mugo

Map of land

cover

land cover types rocks debris grass barren ground water rocks & debris debris & grass rocks & grass rocks, debris & grass rocks & pinus mugo debris & pinus mugo grass & pinus mugo rocks, debris & pinus mugo debris, grass & pinus mugo rocks, grass & pinus mugo rocks, debris, grass & pinus mugo

Map of landsystem units

Result of overlaying relief elements and land cover types

Each landsystem unit represents one type of surface in terms of land cover within one relief element

.... Typological landsystem units are defined on the territory researched

Map of landsystem units

rocks & pinus mugo debris & pinus mugo grass & pinus mugo

rocks, debris & pinus mugo debris, grass & pinus mugo rocks, grass & pinus mugo rocks, debris, grass & pinus mugo

place for accomodation

main tourist route

			Man Section			1.000	
	relief mezoforms	relief microforms					
4		bulged		plain	hollowed		
A.K	ridgetops	summit		ridgetop plain	CC	col	
	slopes	slope ridges		slope surfaces 5-25 25-40 40-90	gully 5-30	slopes 30-80	
are.	active slope feet	rock glacier		active talus			
想	slope feet	talus cone		talus coverage			
No.	bottoms	rigel	rigel col	bottom (terrace)	gully	lake	
	moraines	moraine	moraine				

Aleko 2717

Landsystem units and terrestrial processes

Each landsystem unit provides an environment for occurrence of specific combination of terrestrial processes

Depending on conditions these processes vary in quality and intensity

Landsystem units and terrestrial processes

Prevailing processes in different elements of relief

-Ridgetops - strong weathering, weak transport

-Slope surfaces - strong mass movement, weathering

-Gullies – most intensive transport processes, avalanche and erosive mass movements prevail

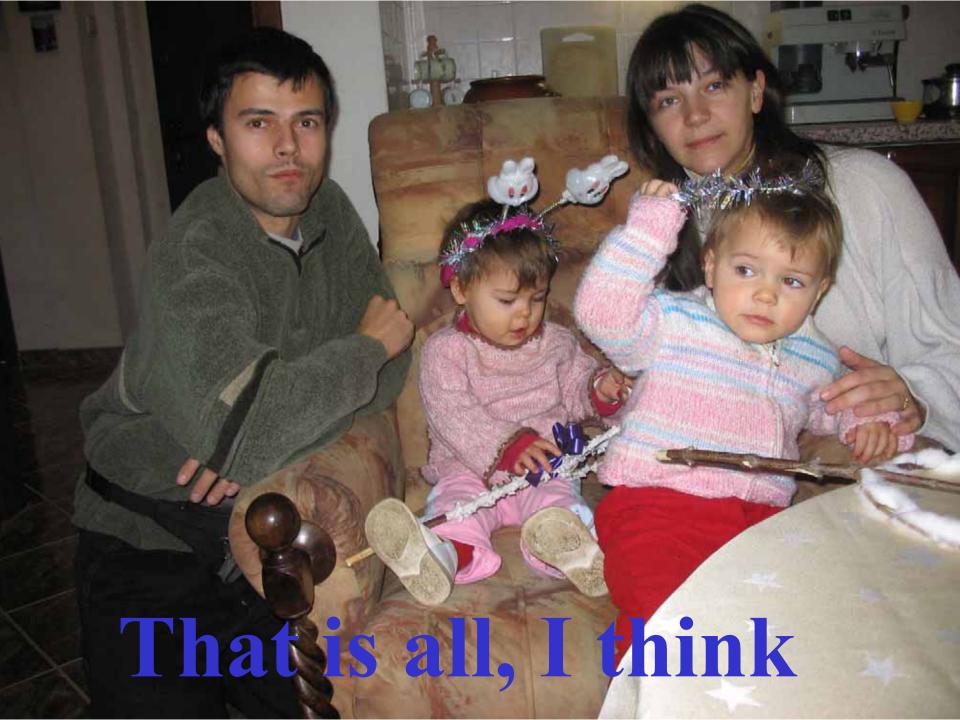
Active slope feet – balance between transport and accumulation
 Slope feet – prevailing accumulation, slow motion downslope
 Bottoms – weathering, in situ soll formation, fluvial transport and redeposition

Landsystem units and terrestrial processes

Prevailing processes in basic land cover types

-Rocks - weathering, rockfalls

-Debris – gravitational movement, additional fracturing


-Grass – solifluction and creep of soil and grass cover, weathering and elluvial formation

Conclusions

Landsystem units are small scale elements of environmental differentiation that have internal Darth surface homogenity

Landsystem units carry specific potential and ability for occurrence of contemporary terrestrial processes. Thus they can serve as basic units for qualitative evaluation of periglacial territories' geomorphic potential and preparation of assessment maps

Landsystem mapping of Musala cirque is a first stage in revealing the landscape structure of the site. Future researches should pay attention to climatic and hydrological conditions, which will allow not only to evaluate the range of processes for each place, but also the differences in processes regime.

