Environmental Effects on the Neutron Monitor Measurements at High Altitudes as Observed at Junginaujoch

ofer, Erwin O. Flückiger, sorgher, Michael R. Moser

Cosmic Rays in the Atmosphere

Principle of Neutron Monitor

0 5 10 15 20 cm

Bern Cosmic Ray Group

University of Bern, Switzerland operates 3 NMs:

- 18-IGY NM at Jungfraujoch, 3570 m asl, since 1958
- 3-NM64 NM at Jungfraujoch, 3475 m asl, since 1986
- Special Neutron Monitor at Bern, 570 m asl, since 1977

Main interest of Bern group:

- Analysis of solar cosmic ray events (GLEs)
- Analysis of Forbush decreases
- Space Weather

18-IGY Neutron Monitor Jungfraujoch

Roof of Sphinx building

3-NM64 Neutron Monitor Jungfraujoch

Roof of Research Station

Special Neutron Monitor Bern

Roof of Physics Institute, University of Bern

Environmental Effects

- Atmosphere (mass) over neutron monitor
- Detector environment (housing, rocks, ground)
- Snow accumulations on and around the NM housing

Effect of Atmosphere

- Change in air mass has large effect on count rate
- This change is the only significant meteorological factor
- Barometric pressure is used as a proxy for the air mass
- Barometric pressure coefficient ~1 % / mmHg
 → pressure must be measured very accurately

Effects of wind on pressure measurements

- Gusty winds cause short-time fluctuations
- Strong winds cause diminished readings of conventional barometers

Bernoulli effect: $p_{meas} = p_{eff} - \rho v^2/2$

1-minute pressure data

NM count rate

atmospheric pressure

wind speed

Jungfraujoch

THUN T

117 120

OF THE PART AND

IGY

NM64

Precipitation

Meteo station at Interlaken, 18 km NNW from Jungfraujoch

NM Simulation with Monte Carlo

- Simulation of interactions of neutrons with material (detector housing, detector, ground, snow)
- Simulation of detection of slow neutrons in the counter tubes
- Geant4 software package

Detector and material in the environment

View from top

Count rate vs. Snow Accumulation on Roof

First preliminary results

ΔN_{IGY} vs. Snow Thickness

Conclusions

- Effects of atmospheric mass and snow accumulations on and around detector must be known for correct interpretations of NM data
- Accurate pressure measurements
- Correct interpretation of pressure measurements during times with gusty and high speed winds
- Monitoring of snow accumulation (measurements of snow height, web cam)
- Consequences may be different for analysis of short and long time NM data

