External Exposure to Natural Radiation

Results of some Experimental Studies

1- INRNE/NPI collaboration

Content

- Comparison of methods used to characterise the exposure due to the environmental radiation background
- Studies on the territory of the INRNE
- Studies on the high-mountain station at Moussala, comparison with Lomnický Štít (High Tatras)
- Common studies with TLDs (aircraft, HECP)

Methods used

- 1. Active instruments:
- Environmental radiation dose rate meter NB 3201 with a plastic scintillator as sensitive element; able to measure the environmental radiation background with low linear energy transfer (LET) (10 nSv to few mSv/h)
- MDU-Liulin semiconductor spectrometer with Sidiode as the sensitive element; able to estimate both low LET and neutron component of the natural background (10 nSv to few mSv/h)
- 2. Passive detectors:
- Thermoluminescent detectors (TLD) CaSO₄:Dy
- Moderator sphere (12 inches)with TED in contact with B-radiators

Measuring localities

- 1. Territory of the INRNE BAS at Sofia:
- Outside of the building of the Division of Cosmic Ray Physics (DCRP) and on its terrace
- Around the reactor IRT 2000 building
- Basic Ecological Observatory (BEO) Moussala; altitude 2925 m, geographic coordinates 25°35' E and 42°11' N
- 3. Lomnický Štít Observatory of the Institute of Experimental Physics SAV, High Tatras; altitude 2634 m, geographic coordinates 20°22' E and 49°20' N

Results - INRNE

Measuring point	H*(10), nSv/h, as measured by				
	NB 3201	MDU-Liulin*	TLD		
DCRP – in front of	106	-	-		
DCRP – terrace	102	103	78-141		
Reactor – 1	110	134	130-154		
Reactor - 2	100	104	124		

* Mean value for two MDU units

Results - BEO Moussala

Measuring point	H*(10), nSv/h, as measured by				
	NB 3201	MDU	TLD		
Ground level of building	240	-	-		
First floor of building	138	130 ^{*)}	-		
Outside of building	176	-	165-183		
Terrace of building	138	140*)	-		

*) Corresponding only to low LET radiation

The average value of monitors of INRNE BAS110 nSv/h; minimum and maximum values 87.5 and 128.1 mSv/h

Results - neutron component of cosmic radiation at BEO Moussala - Comparison of different instruments and methods

Method	Annual value	Annual value
(Quantity measured)	measured	corrected
Harwell 3208-1	$(190 - 390) \mu Sv^{1)}$	(380 – 780) µSv
Sphere with ¹⁰ B	$(254 \pm 26) \mu Sv^{2)}$	$(508 \pm 52) \mu Sv$
MDU-Liulin	$(180 \pm 72) \mathrm{nGy}^{3)}$	$(1080 \pm 380) \mu Sv$
UNSCEAR 2000	-	~ 580 µSv
¹⁾ Period $09/02 \div 05/03$;	²⁾ Period $11/00 \div 02/04$; ³⁾ November 2000

Results - neutron component of cosmic radiation at Lomnický Štít - Event spectra in MDU Si-diode instrument

Results – neutron component of cosmic radiation– Comparison of BEO Moussala and Lomnický Štít high mountain stations

	Annual values measured at						
Estimated from	Moussala ¹⁾		Lom. Štít ¹⁾				
	D(Si), µGy	H*(10), μSv	D(Si), µGy	H*(10), µSv			
MDU-Fr	180 ± 72	1080 ± 380	-	-			
MDU-CZ01	-	-	135±6	440 - 850			
MDU-CZ02	-	-	113±7	440 - 760			
UNSCEAR 2000	-	~580	-	~570			

¹⁾Measuring times 14 hours at Moussala, 95 hours at Lomnický Štít

Onboard aircraft exposure

- A310-300 Czech Airlines
- 05/05-31/12/05
- Together with MDU INRNE since 08/09 Liulin
- All navigation data available – dose calculated
- Trach etched detectors; TLD's

TLD results:

- **1. Exposure dates**
- NPI's full time •

2. Results since 08/09/05: Al₂O₃ :C: (1.75±0.25) mSv AIP glas: (1.66±0.09) mSv

CaSO4:Dy: (1.5-1.8) mSv

RR of TLDs to high energy charged particles HIMAC, NIRS Chiba, September 2005

lon	Energy	LET	shield	RR		
	(MeV/n)	keV/µm		AI_2O_3/C	Al-P skla	CaSO ₄
⁴He	150	2,2	Bare Beam	0,77	0,84	1,01
⁴He	150	3,5	Behind PMMA	1,10	1,37	1,63
¹⁶ O	400	19,8	Bare Beam	0,50	0,98	0,99
¹⁶ O	400	23,8	Behind PMMA	0,47	0,95	0,94
⁴⁰ Ar	500	89,3	Bare Beam	0,34	0,68	0,62
⁴⁰ Ar	500	100	Behind PMMA	0,34	0,68	0,62
⁵⁶ Fe	200	310	Bare Beam	0,26	0,61	0,47
⁵⁶ Fe	200	321	Behind PMMA	0,35	0,77	0,57

External Exposure to Natural Radiation

Results of some Experimental Studies

2 - Onboard aircraft exposure

- 1. International activities
- 2. Experimental studies 1991-2005
- Period 1991-1999 set of dosimetry methods (TEPC, rem-meter, Bubbles, TLD, scintillator, IC, GM, APD)
- Period since 2000 mostly MDU-Liulin results

3. Routine individual dosimetry of aircraft crew members of czech air companies, 1998-2004

ICRU&ICRP TG No. 50

- Goal : to prepare the recommendations "Reference doses from cosmic radiation exposure of aircraft crew"
- Scheduled: 2001-2005; now 2006/2007
- Current stage: decision taken to concile different groups and prepare the data in the forme of acceptable limits for low and high "typical"solar activities periods

WG 21 ISO TC/85 - since 2001

- ISO 20785: "Dosimetry for exposure to cosmic radiation in civilian aircraft"
- Current stage: decided to prepare in 3 parts:
- "Conceptual basis for measurements";
 done 09/05
- "Characterisation of instrument response",
 WD end 2005
- "Standardization of measurements procedures" (≥2006)

DG's RTD and TREN EC + EURADOS

• WG – Article 31 EURATOM

DOSMAX (6thEF)

CONRAD – WP 6 (7thEF)

• EURADOS WG 5

WG EURADOS (Art. 31 EURATOM) "Cosmic Radiation Exposure of Aircraft Crew: Compilation of available experimental and calculated data"

1999-2004; Eds.: I. McAulay, D. Bartlett, P. Beck, K. Schnuer, H. Schraube, F. Spurny; 280 p. ISBN 92-894-8448-9; several ten thousands data: The total uncertainty of measured values is about 25% (2s). The total uncertainty in the values of effective dose calculated by different codes is estimated to be about 30%.

Example of results -long term monitoring-1

Period	Returned flights monitored ^{*)}	Numbers of flights				
22/03-07/05/01	PRG-NY(25), PRG-TOR(13), PRG-	108				
	DUB(3)					
30/05-24/07/01	PRG-NY(41), PRG-TOR(12)	125				
29/08-16/10/01	PRG-NY(26), PRG-TOR(13), PRG-	96				
	DUB(2)					
25/10-10/12/01	PRG-NY(20), PRG-TOR(7), PRG-	70				
	AMS(1)					
06/05-28/06/02	PRG-NY(22), PRG-TOR(13), PRG-	124				
	DUB(8), PRG-LHR(5), PRG-MAD(5)					
16/10-06/12/02	PRG-NY(23), PRG-TOR(10), PRG-	110				
	DUB(1), PRG-DUB-CM (5), PRG-					
	MUN(1)					
*) PRG – Prague, NY – New York, TOR – Toronto (via Montreal), DUB – Dubai, CM-Colombo,						

Example of results -long term monitoring-2

Route	Relative	deviation, %,	of measured	and Epcard	calculated H
Period	22/03-	30/05-	29/08-	25/10-	16/10-
	07/05/01	24/07/01	16/10/01	10/12/01	06/12/02
PRG - JFK	0.1±5.3	- 11.5±4.8	-5.7±3.7	-6.6±5.1	4.6±3.5
JFK - PRG	0.5±6.0	11.2±5.9	-5.6±4.0	-7.1±4.6	2.9±3.6
PRG - YYZ	-1.8	-9.1±1.5	-3.7±2.9	-	-
YYZ - PRG	9.8	-8.9±1.0	-5.2±3.6	-	-
PRG - YUL	2.6±6.9	-8.9±5.2	-5.2±3.6	-5.9±4.8	-0.4±5.3
YUL - PRG	0.6±3.8	-10.1±3.5	-0.5±5.0	-2.5±4.8	-0.8±4.8
PRG - DXB	-6.72.8	-	-13.70.1	-	9.23.3
DXB - PRG	-8.8±6.4	-	-6.8±2.7	-	13.4±4.2

Solar flare (GLE 60) registered onboard with MDU aircraft; rate increased 3times, total E by 40%

Registration of extreme events: Forbush decrease after GLE 65 29/10/2003

Ratios of ambient dose equivalent values for total flights estimated from MDU-Liulin measurements and calculated by means of EPCARD3.2 code

Date	Event	For low E _{dep}	For high E _{dep}	Total H
12/04/01	Forbush (LŠ: - 13 %)	0,92	0,78	0,84
15/04/01	GLE 60 (LŠ: +10 %)	1,24	1,68	1,45
16/04/01	normal	1,01	1,00	1,01
25/10/03	normal	0,95	1,00	0,98
29/10/03	Forbush (LŠ: - 26 %)	0,88	0,62	0,74

Remarks:

1) LŠ: difference of countings at Lomnický Štít cosmic ray neutron monitor 2) April 2001: PRG-JFK flights; October 2003: PRG-SOF (25/10); SOF-PRG (29/10)

Cosmic ray neutron monitor stations

Monitor	Country	Latitude	Longitude	Altitude [m]	Rigidity [GV]
Jungfraujoch	Switzerland	46,55° N	7,98° E	3550	4,48
Lomnický štít	Slovakia	49,2° N	29,22° E	2632	3,84
McMurdo	Antarctic	77,85° S	166,72° E	48	0,01
Newark	USA	39,7° N	75,7° W	50	2,1
South Pole	Antarctic	90° S	0°	2820	0,09
Thule	Groenland	76,58° N	68,42° W	260	0

Measurements 2005

- Long-haul flights Prague Amsterdam-Beijing-Amsterdam-Prague 26/03 – 02/04;
- Long-haul flight Paris-Tokyo 05/09.
- Individual flights 2005;
- Long-term monitoring onboard a Czech Airlines aircraft

Other long-haul flight

Short-haul flights 2005

			MDU		CARI	EPC-E		EPC-	H*(10)
Flight	Date	Hlow	Hhigh	Htot			Htot	Hhigh	Hlow
PRG SVO	17.II	3,52	5,51	9,03	8,73	8,5	7,5	4,2	3,3
SVO_PRG	22.II	2,84	5,95	8,79	7,38	7,5	6,5	3,7	2,8
PRG_SOF	9.III	2,12	2,21	4,33	4,41	4,5	4	2,16	1,84
SOF_PRG	15.III	1,97	3,01	4,98	4,67	4,5	4	2,16	1,84
PRG_AMS	26.III	1,28	2,36	3,64	3,56	3,48	2,48	1,42	1,06
AMS_PRG	2.IV	1,26	1,81	3,07	2,95	3,42	2,48	1,4	1,1
PRG_SOF	7.VII	1,76	2,67	4,43	4,37	5	4,5	2,43	2,17
SOF_PRG	13.VII	1,81	3,16	4,97	4,62	5	4,5	2,43	2,17
PRG_SVO	11.VIII	3,61	6,5	10,11	9,86	11,5	9,5	5,32	4,18
SVO_PRG	17.VIII	3,78	7,41	11,19	11,35	11,5	9,5	5,32	4,18
total		57,66	96,7	152,36	149,84	144,9	122,96	69,04	54,14

Average total value : (142 \pm 13) μ Sv

Long-term monitoring onboard a CSA aircraft state-of-art 05/05/-31/12/05

- Total number of flights : ~ 400;
- More than 70 % above North Atlantic;
- Interesting events:
- Forbush decreases:
- ✓ 8.-9.5.; (PRG-JFK)
- ✓ 15.-16.5.; (2 x PRG-YYZ; PRG-DXB-CMB)
- ✓ 17.-18.7. (small SPE ?) (**PRG–TUN (MAD)–PRG**)
- ✓ 10.- 16.9. (PRG-SVO; PRG-MAD; 2x PRG-JFK; AR)

Onboard aircraft exposure

- A310-300 Czech Airlines
- 05/05-31/12/05
- Together with MDU INRNE since 08/09 Liulin
- All navigation data available – dose calculated
- Trach etched detectors; TLD's

TLD results:

- **1. Exposure dates**
- NPI's full time •

2. Results since 08/09/05: Al₂O₃ :C: (1.75±0.25) mSv AIP glas: (1.66±0.09) mSv

CaSO4:Dy: (1.5-1.8) mSv

ROUTINE INDIVIDUAL DOSIMETRY PROCEDURE

- 1. Air company representative prepares the data sets characterising the aircraft and persons traffic for a period
- 2. Sets are used to create an input set for the CARI code
- 3. The calculation of individual effective dosis for each flight performed, simplified flight profile:
 - only actual parameter: flight time
 - calculated for the model routes parameters, i.e.
 - flight altitude ; and the time of the rise and the falling down
- 4. The effective dose of each aircrew member are calculated and transmitted to an air company

REMARKS: All data since 1998 now recalculated by CARI 6 Generally – more than 90 % above 1 mSv

Individuel dosimetry of aircraft crew – czech air companies

External Exposure to Natural Radiation

Results of some Experimental Studies

2 - Onboard spacecraft exposure

Dosimetry and microdosimetry methods

- Thermoluminescent detectors (TLD's)
- >Al₂O₃:C; LiF:Mg,Cu,P; CaSO₄:Dy; > 1 μ Gy
- ➢AIP glass; LiF:Mg,Ti; > 10 µGyDifferent RR=f(LET)

• Spectrometer of the LET - H and D distributions in LET \in (\approx 10;700) keV/ μ m in tissue; 1 to 100 mSv

Experiments and analysis 2004-2005 On-Earth's calibrations

ICCHIBAN 6 (C, Ar, Kr; 24 - 600 keV/μm)
 ICCHIBAN-NSRL (H, O, Fe; 0.2 – 150 keV/μm)
 ICCHIBAN 8 (He, O, Ar, Fe; 2.2 – 320 keV/μm)
 Dubna Nuclotron (C, Mg, Fe; 8 – 200 keV/μm)

Calibration of TED for LET spectrometry; angular dependence of the response

Some more recent onboard SS measurements

Mission	Period	Shield	Altitude	TLD	D-TED	H-LET
		g.cm ⁻²	km	µGy/day	µGy/day	µGy/day
MIR 28	6/04/-	~15	330-350	140 ± 10	13 ± 1	85 ± 5
	16/06/00					
ISS-1	30/11/01-	~ 20	380–420	212 ± 15	22 ± 2	202 ± 12
	3/11/02					
MESSAGE	17/10/-	~15	380-420	166 ± 8	16 ± 2	223 ± 22
	28/10/03					
ISS-2	31/01/-	~15	340-360	150 ± 8	15 ± 1	98 ± 5
	31/10/04					

Interpretation of measured data Made supposing that:

- TLD's data characterize mostly of radiation with LET below few keV per μm (primary protons);
- the ratio of high LET secondary particle dose and primary proton collision dose is equal to (0.025 ± 0.003);
- the contribution of primary long range cosmic heavier charged particles represents about 22% of total LET spectrometer established dose, resp. 34% of LET spectrometer established dose equivalent value.

Full dosimetric characteristics onboard of space stations

Mission	D, µGy/day		Neutrons	H, μSv/day		Neutrons
	>10	total	in % of D	>10	total	in % of H
	keV/µm			keV/µm		
MIR 28	17 ¹⁾	157	6.0	129	269	22
ISS-1	28	240	7.0	306	518	27
MESSAGE	21	186	6.4	338	504	34
ISS-2	19	191	5.6	148	322	22

¹⁾ 1 S.D. estimated to 15-20%

Comparison

MDU-Liulin spectra

onboard aircraft

(2001, 2005 – *in total* ~ 200µSv);

and onboard ISS

(2001 – no SAA ~ 70 μGy; in SAA ~ 360 μGy)

Comparison of Si-energy deposition spectra

Comparison

MDU-Liulin spectra onboard aircraft (2001, 2005 ~ 200µSv); and onboard ISS (2001 - no SAA ~68.6 µGy; in SAA ~ 360 µGy)

When supposed that:

- neutron spectra onboard ISS and aircraft are similar;
- relative excess above 1 MeV onboard ISS is due to HECP of GCR with QF ~ 5; and
- the correction factors for non-neutron and neutronlike component are the same onboard ISS as onboard aircraft;

Than outside SAA the daily values of "H*(10)" are:

- non-neutron component: 72.3 μSv;
- neutron-like component: 119.3 µSv;
- HECP component: 64.6 µSv; and
- Total: 256 µSv
- Average QF ~ 2.8
- When in SAA mostly protons with QF ~ 1.5 than

Total ~ 610 µSv; QF ~ 2.0

Comparison of CERF and at 35kfeet calculated spectra

Calculated Neutron Spectra

Further comparison of neutron spectra

Experiments going on; future also with TLDs INRNE

- Long term exposure (>3 years) ISS;
- Further on-Earth calibrations
- Onboard ISS dosimetry and LET spectrometry:
- Interior of a phantom (russian Matrjoshka);
- In-area distribution of dosimetry characteristics
- Further comparison MDU on ISS/aircraft
- DOBIES project (ESA); since 2006

Basic references

- Transport Methods and Interactions for Space Radiation. NASA Reference Publication 1257; eds.: Wilson, J.W. et al., NASA, December 1991
- 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publications 60, Annals of ICRP 21, (1-3), 1991
- *Exposure of Aircrew to Cosmic Radiation*. EURADOS Rep.1996-01, eds.: I.R.McAulay et al., ISBN 92-827-7994-7, Luxembourg 1996
- W. Friedberg et al.: *Computer Program CARI*. US Department of Commerce, NTS, Springfield, VA, 1994
- Operational Radiation Safety Program for Astronauts in low Earth Orbit: A Basic Framework. NCRP Rep. No. 142, Bethesda, 2002
- Dosimetry of Aircrew Exposure to Radiation During Solar Maximum. Final Report, EC Contract No. FIGM-CT-2000-00068, Coordinator: Denis O'Sullivan, DIAS, Dublin 2004
- Cosmic Radiation Exposure of Aircraft crew: Compilation of Measured and Calculated data. Editors: L.Lindborg, D. Bartlett, P. Beck, I. R. McAulay, K. Schnuer, H. Schraube and F. Spurný, EC-DG TREN, ISBN 92-894-8448-9, Luxembourg 2004
- G. Reitz: *Radiation. Limiting Human spaceflight?* Keynote Lecture, 15th Humans in Space Symposium, Graz, May 22-26, 2005
- D. Bartlett: private communication, 2005

Thank you for your attention !