Potential and Expected Contribution of the Nuclear Physics Institute of the AS CR to the BEOBAL Project

> **BEOBAL Methodological and Coordination Meeting 2005**

František Spurný

Nuclear Physics Institute - Department of Radiation Dosimetry,

Academy of Sciences of the Czech Republic, Prague

NUCLEAR PHYSICS INSTITUTE DEPARTMENT OF DOSIMETRY

Biophysical et microdosimetric aspects of the lonizing energy transfer to the matter

- Theoretical modelisation of the indirects effects of the energy transfer to biomolecules, particularly to DNA
 - Experimental microdosimetry (including modelisation of the detector's fonctionning) and its use in the different radiation fields (hadron beams for radiotherapy, onboards aircraft and spacecraft, natural radiation envoronment

NUCLEAR PHYSICS INSTITUTE DEPARTMENT OF DOSIMETRY

Environmental radiation dosimetry

- Radionuclides in the environment (T, ¹⁴C, ⁸⁵Kr, I, αemitters), radiocarbon dating – liquid scintillation and/or Ge(Li) spectrometry, etc.
- Rn and its descendents track etch detectors in soil and/or dwellings
- External exposure to natural radiation highmountains stations measurements, dosimetry and radiation protection of aircraft crews, etc.

International collaboration - EC

- Dosimetry of Aircrew Exposure to Radiation during Solar Maximum, (5th FP) – FIGM–CT2000-00068, up 2004
- Euronetwork for Light Ion Hadrontherapy, (5th FP), up 2005
- Developing of Scientific Basis for Monitoring, Modeling and Predicting Space Weather". COST 724, 2002/7
- Harmonisation of Techniques and Methodologies for Measuring Radioactivity in the Environment. JRC, ITE, Karlsruhe. since 2003
- Dosimetry for Space Biological Experiments, ESA, 2006/8
- CONRAD: "A Coordinated Network for Radiation Dosimetry". – (6th FP), 2005-2008
- COST Action P9: "Radiation Damage in Biomolecular Systems", since 2005

Other international collaborations

- BAS, Sofia: INRNE, STIL, Geol– environmental radiation dosimetry, dosimetry in complex radiation fields, including aircraft nad spacecraft boards
- Centre de Biophysique Moleculaire CNRS, Orléans, France
 radiation damage to biomolecules
- Limoges University environmental radiation dosimetry
- IRSN, Fontenay-aux-Roses, France: aircraft and spacecraft dosimetry, individual and accidental dosimetry
- JINR Dubna: environmental dosimetry, biophysics, radiotherapy, radiation protection (RP), ADTT
- IMBP, RAS, and RTCRS-CO, Moscow environmental dosimetry, cosmic ray dosimetry and RP
- HAS, INR Debrecen dosimetry applications of TED (Rn)

Basic experimental facilities

- Liquid scintillation spectrometers (3);
- Gamma spectrometry measuring unit ORTEC;
- Apparatus for scintillation measuring of ⁸⁵Kr;
- Gas chromatograph Carlo Erba GC 8000;
- Appliances for aerosols and deposition sampling and for iodine filter sorbent tests;
- Set of dosimetry methods for the measurements on aircraft board and in the environment;
- Universal stand for multiple electrochemical etching.
- Facility LUCIA G for automatical evaluation and LET spectra calculation on the base of track etched detectors;
- Etalon radiation beams and fields (⁶⁰Co, ¹³⁷Cs, AmBe, ²⁵²Cf, AmF, etc.); radiotherapy unit Chisostat, electrometers Keithley 617 and 35617;
- Bubble detectors neutron spectrometers;

S&T cooperation NPI related to BEOBAL - overview

 Results presented during INSINUME04, Albena, September 2004

• Recent activities, 2004-2005

• Proposed actions

ENVIRONMENTAL EXTERNAL RADIATION AT SOME BULGARIAN LOCALITIES

František SPURNÝ¹, Metodi GELEV², Karel TUREK¹, Iancho DIMOV², Evgenia HRISTOVA²

¹ Department of Radiation Dosimetry (DRD) Nuclear Physics Institute (NPI) Academy of Sciences of the Czech Republic (AS CR) Prague,

² Institute of Nuclear Research and Nuclear Energy (INRNE), Bulgarian Academy of Sciences (BAS), Sofia,

Content

 Comparison of methods used to characterise the exposure due to the environmental radiation background

 Results of studies on the territory of the INRNE

 Results of studies on the high-mountain station at Moussala, comparison with Lomnický Štít (High Tatras)

Methods used

- 1. Active instruments:
- Environmental radiation dose rate meter NB 3201 with a plastic scintillator as sensitive element; able to measure the environmental radiation background with low linear energy transfer (LET) (10 nSv to few mSv/h)
- MDU-Liulin semiconductor spectrometer with Sidiode as the sensitive element; able to estimate both low LET and neutron component of the natural background (10 nSv to few mSv/h)
- 2. Passive detectors:
- Thermoluminescent detectors (TLD) CaSO₄:Dy
- Moderator sphere (12 inches)with TED in contact with B-radiators

Measuring localities

- 1. Territory of the INRNE BAS at Sofia:
- Outside of the building of the Division of Cosmic Ray Physics (DCRP) and on its terrace on which a radiation monitor is permanently measuring;
- Around the reactor IRT 2000 building
- 2. Basic Ecological Observatory (BEO) Moussala; altitude 2925 m, geographic coordinates 25°35' E and 42°11' N
- 3. Lomnický Štít Observatory of the Institute of Experimental Physics SAV, High Tatras; altitude 2634 m, geographic coordinates 20°22' E and 49°20' N

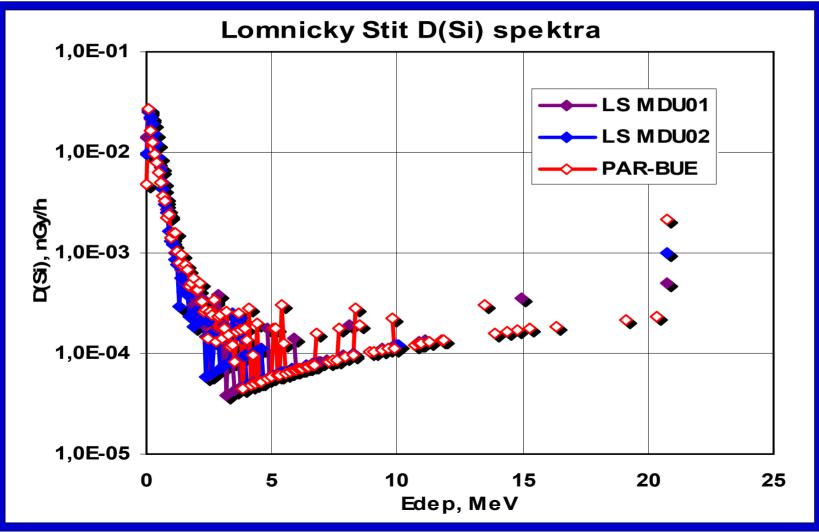
Results - INRNE

Measuring point	H*(10), nSv/h, as measured by			
	NB 3201	MDU-Liulin*	TLD	
DCRP – in front of	106	-	-	
DCRP – terrace	102	103	78-141	
Reactor – 1	110	134	130-154	
Reactor - 2	100	104	124	

* Mean value for two MDU units

Results - BEO Moussala

Measuring point	H*(10), nSv/h, as measured by			
	NB 3201	MDU	TLD	
Ground level of building	240	-	-	
First floor of building	138	130*)	-	
Outside of building	176	-	165-183	
Terrace of building	138	140*)	-	


*) Corresponding only to low LET radiation

The average value of monitors of INRNE BAS110 nSv/h; minimum and maximum values 87.5 and 128.1 mSv/h

Results - neutron component of cosmic radiation at BEO Moussala - Comparison of different instruments and methods

Method	Annual value	Annual value	
(Quantity measured)	measured	corrected	
Harwell 3208-1	(190 - 390) µSv ¹⁾	(380 – 780) µSv	
Sphere with ¹⁰ B	$(254 \pm 26) \ \mu Sv^{2)}$	$(508 \pm 52) \mu Sv$	
MDU-Liulin	$(180 \pm 72) \mathrm{nGy}^{3)}$	$(1080 \pm 380) \ \mu Sv$	
UNSCEAR 2000	-	~ 680 µSv	
¹⁾ Period $09/02 \div 05/03;$	²⁾ Period $11/00 \div 02/04$; ³⁾ November 2000	

Results – neutron component of cosmic radiation at Lomnický Štít – Event spectra in MDU Si-diode instrument

Results – neutron component of cosmic radiation– Comparison of BEO Moussala and Lomnický Štít high mountain stations

	Annual values measured at			
Estimated from	Moussala ¹⁾		Lom. Štít ¹⁾	
	D(Si), µGy	H*(10), μSv	D(Si), µGy	H*(10), µSv
MDU-Fr	180 ± 72	1080 ± 380	-	-
MDU-CZ01	-	-	135±6	820±36
MDU-CZ02	-	-	113±7	757±45
UNSCEAR 2000	-	~680	-	~670

¹⁾ Measuring times 14 hours at Moussala, 95 hours at Lomnický Štít

S&T cooperation NPI related to BEOBAL – activities 2004–2005

- Rn detection and dosimetry:
- In soil comparison of TLD and track etch detectors
- > Automation of track counting by means of a scanner
- External exposure to natural radiation:
- Cosmic neutrons at BEO Moussala continue
- TLD (INRNE) exposure onboard a Czech Airlines aircraft,
- Radioactivity in the environment
- Consulting concerning ¹⁴C monitoring at NPS
- Measuring and evaluation methods for LSC
- Equipment and evaluation for ¹⁴C monitoring in air

S&T equipment - renewal, upgrading

- Lent from NPI for long-term
- Universal stand for multiple electrochemical etching;
- ➤ LSC Tricarb 1050 in preparation

Detector's calibration

- TLD NPI calibration facilities; high energy heavy charged particles (HIMAC, Chiba, Japan);
- Comparison of TED evaluation procedures;

Improvement of Human Resources

- Stays for PhD students in NPI:
- > 30 + 14 days advances in TED method, particularly for Rn detection and dosimetry – just started
- 30 + 14 days advances in radioactivity measurements, particularly for ¹⁴C and T measurements by LSC planned 2006/2007
- Seminars to advanced topics:
- Track etch detectors and their use for environmental dosimetry and other studies done
- Methods and equipment for external exposure in the environment; their metrology – planned early 2006